

SDI-12 Pulse / Analog Interface

The TBS02PA is a SDI-12 interface board for the connection of a rain gauge, an anemometer and a wind vane. Furthermore it provides 3 general purpose analog inputs with a range of 0-1V, 0-2,5V, 0-5V and a 4...20mA current input. The ADC provides a resolution of 12 Bit.

The pulse count inputs are supported by a real time clock circuit, buffered with a super-capacitor. It is capable of holding the time for more than 6 month after the last measurement.

The interface board supports both passive and active anemometers with pulse outputs. The 12V supply lines for attached sensors are only switched on during the measurement in order to minimize current consumption.

The TBS02PA is available in two housing variants. One variant comes in an off shelf IP67 housing from Fibox. The other variant comes in a DIN Rail housing.

TBSPA02 SDI-12 Pulse / Analog Interface

Features

- dedicated pulse input for a rain gauge
- dedicated pulse input for an anemometer
- advanced anemometer features (averaging and calculation of minimum and maximum wind speed over a configurable logging period
- dedicated analog wind vane input
- analog input, 0-1V, 12 bit
- analog input, 0-2.5V, 12 bit
- analog input, 0-0.25V/0.5V/5V, 12 bit
- current input, 4-20mA, 12 bit
- SDI-12 controllable latching relay with read back capability and timer functionality
- switched sensor supply output
- Precision reference

- Low noise/low drift chopper amplifiers
- SDI-12 Standard V1.3
- Plug and Play
- 6 16V supply voltage
- DIN RAIL variant
- Fibox housing variant
- Operating Temperature Range:
 40°C ... + 85°C
- Excellent price-performance ratio

Target Applications

SDI-12 Sensor Networks

Contents

1	INTI	RODUCTION	4
	1.1 1.2 1.3 1.4 1.5	MEASUREMENT PRODUCT FEATURES CALIBRATION INSTALLATION SDI-12	4 4 5 5 5
2	APF	PLICATION EXAMPLES	6
3	HAF	RDWARE DESCRIPTION	7
	3.1 3.2 3.3	FIBOX VARIANT, BOARD OVERVIEW CONNECTIONS DIN-RAIL VARIANT, BOARD OVERVIEW	7 8 10
4	ANE	EMOMETER INPUT	12
5	WIN	ID VANE INPUT	16
6	RAI	N GAUGE INPUT	17
7	AN/	ALOG INPUTS	19
	7.1	TEMPERATURE COMPENSATION	20
8	REL	AY OUTPUT	23
9	SUF	PORTED SDI-12 COMMANDS	24
9	9.1	SUPPORTED EXTENDED COMMANDS	26
10	APF		30
	10.1 10.1 10.2 10.3 10.4 10.4 10.4	SETTING UP TBS02PA TOGETHER WITH TBS03 .1 Requirements .2 Driver HARDWARE SETTING UP SDI-12 COMMANDER LITE OPERATING THE TBS02PA USING SDI-12 COMMANDER LITE .1 Setting time and date .2 Setting parameters for wind vane, anemometer and rain gauge	30 30 30 31 31 32 32
11	TEC	CHNICAL SPECIFICATIONS	34
12	EN/	/IRONMENTAL SPECIFICATIONS	35
13	ORI	DERING INFORMATION	35
14	HIS	TORY	35

24 Bit Analogue to SDI-12 Interface manual

Tables

Table 1: anemometer specific SDI-12 commands	14
Table 2: wind speed unit conversion	14
Table 3: wind vane specific SDI-12 commands	16
Table 4: RTC specific SDI-12 commands	17
Table 5: rain gauge specific SDI-12 commands	18
Table 6: analog input specific SDI-12 commands	20
Table 7: Temperature sensor characteristics	20
Table 8: Temperature measurement/compensation specific SDI-12 commands	21
Table 9: relay specific SDI-12 commands	23
Table 10 – Standard SDI-12 commands	26
Table 11 – Extended SDI-12 Commands	29
Table 12 – Technical Specifications	34
Table 13 - Environmental Specifications	35
Table 14 – Ordering Information	35
Table 15 – History	35

Figures

Figure 1 – Sensors connected to TBS02PA and to TBS03 SDI-12 to USB converter; setup for controlling / sensors and for PC based data recording	testing 6
Figure 2 – Analogue sensors connected to TBS02PA and to Remote Telemetry Unit or Data Recorder	6
Figure 3 – Fibox Variant: Connector Positions	7
Figure 4 – Fibox Variant: Connector Positions	10
Figure 5 – reed switch based anemometer; connection to TBS02PA	12
Figure 6 – light barrier based anemometer; connection to TBS02PA	12
Figure 7 – Connection of a potentiometer based wind vane	16
Figure 8 – rain gauge connected to TBS02PA	17
Figure 9 – SDI-12 Commander Lite: sensor selection	31
Figure 10 – command tab for TBS02PA added	31
Figure 11 – Anemometer command buttons	31
Figure 12 – setting date and time	32
Figure 13 – "Edit buttons" window	33
Figure 14 – "Edit buttons" window	33

24 Bit Analogue to SDI-12 Interface manual

1 Introduction

The TBSPA02 is a versatile SDI-12 interface box, suitable to connect rain gauges and anemometers with pulse output, wind vanes with analog or potentiometer output and analog sensors with voltage or current output. To extend its scope of application, the TBSPA02 contains a latching relay which can be coupled to an internal temperature sensor to switch the heating for wind vane / anemometer or which can be used to control irrigation. The relays can be coupled with an on board RTC timer. The RTC is also used to calculate accumulated rainfall.

1.1 Measurement

The TBS02PA offers 8 input channels:

Anemometer	pulse input, momentary wind speed or average, minimum and maximum wind speed over a configurable logging period
Rain gauge	pulse input
Wind vane	2,5V analog input / potentiometer input
Analog Channel 0	0V 1V
Analog Channel 1	0V 2.5V
Analog Channel 2	0V 0.25V / 0.5V/ 0 5V; configurable with extended SDI-12 command
Analog Channel 3	0 (4mA) 20mA
-	

Additional features: Latching relay output with read back capability Dual channel RTC buffered with super capacitor On board temperature sensor Reference voltage: 2.5V, +/-2mV, 5ppm/°C ADC Resolution: 12 Bit Low noise/low drift chopper amplifiers

1.2 Product Features

- Measurement of input channels with individual M-Commands
- Setting of the response time with Extended SDI-12 Command
- The measurement result of each channel can be independently scaled with a third order polynomial using Extended SDI-12 Commands
- On board temperature sensor
- Dual channel RTC
- Low noise/low drift chopper amplifiers
- Precision reference
- Input protection
- Dimensions: 80mm x 120mm x 57mm
- Mounted into IP67 housing of FIBOX, model PC081206 or DIN-rail housing
- Operating temperature range: -40 ... +85°C

1.3 Calibration

An offset or gain error of the analog system (sensor + TBS02PA analogue frontend) can be compensated using the scaling capability of the TBS02PA.

1.4 Installation

The TBS02PA is compatible with any data logger or remote telemetry unit with SDI-12 interface. Refer to the data logger or RTU manual and to chapter 2 of this datasheet.

1.5 SDI-12

SDI-12 is a standard for interfacing data recorders with microprocessor-based sensors. SDI-12 stands for serial/digital interface at 1200 baud. It can connect multiple sensors with a single data recorder on one cable. It supports up to 60 meter cable between a sensor and a data logger.

The SDI-12 standard is prepared by

SDI-12 Support Group (Technical Committee) 165 East 500 South River Heights, Utah 435-752-4200 435-752-1691 (FAX) http://www.sdi-12.org

The latest standard is version V1.3 which dates from July 18th, 2005. The standard is available on the website of the SDI-12 Support Group.

More information on SDI-12 is presented in chapter 3.

2 Application Examples

V1.6

TBS02PA

Figure 1 – Sensors connected to TBS02PA and to TBS03 SDI-12 to USB converter; setup for controlling / testing sensors and for PC based data recording

Figure 2 – Analogue sensors connected to TBS02PA and to Remote Telemetry Unit or Data Recorder

3 Hardware Description

3.1 FIBOX variant, board overview

Figure 3 – Fibox Variant: Connector Positions

The TBAB02 is based on a sensor front end with input over-voltage protection, pulse inputs, chopper amplified analog inputs, a 12 bit ADC and a precision voltage reference. A microcontroller controls the analog section, power management and the SDI-12 communication.

3.2 Connections

4 Pin terminal blocks:

CON3 - SDI-12 Interface

Shield: connect to the shield of the SDI-12 cable or leave it unconnected Ground: connect to the GND wire of the SDI-12 cable SDI-12 data: connect to the data wire of the SDI-12 cable 6-12V supply: connect to the positive supply voltage wire of the SDI-12 cable

CON7 – Analog input channel 0; 0...1V input voltage range; 6-12V sensor supply voltage output CON8 – Analog input channel 1; 0...2.5V input voltage range; 6-12V sensor supply voltage output CON9 – Analog input channel 2/1; 0...5V input voltage range; 6-12V sensor supply voltage output CON9 – Analog input channel 2/2; 0...0.25V/0.5V input voltage range; 6-12V sensor supply voltage output CON10 – Analog input channel 3; 0(4)...20mA input current range; 6-12V sensor supply voltage output

GND: connect to sensor GND
GND: connect to cable shield
Analog input: connect to the ratio metric voltage or current output of the sensor
VCC: connect to the sensor supply input; the output voltage is equivalent to the SDI-12 supply voltage and gets switched on during an SDI-12 measurement

CON5 – Anemometer terminal block; pulse input; connectivity for active (pulse output) and passive (reed switch) anemometers

GND: connect to sensor GND

GND: connect to cable shield

Anemometer: connect to the pulse output of the sensor (active anemometer); connect the reed switch of passive anemometers between this terminal and VCC

VCC: supply terminal for active anemometers; the output voltage is equivalent to the SDI-12 supply voltage and gets switched on during an SDI-12 measurement; connectivity for the reed switch

CON4 - Wind vane terminal block; analog input; connectivity for potentiometer based wind vanes

GND: connect the low side of the potentiometer to this terminal

GND: connect to cable shield *Wind vane:* connect the wiper of the potentiometer to this terminal *VCC:* 2.5V buffered reference voltage output; connect the high side of the potentiometer to this terminal

CON6 - Rain Gauge input channel; pulse input; connectivity for reed switch based rain gauges

GND: connect to sensor GND

GND: connect to cable shield

Rain Gauge: connect the reed switch of the rain gauge between this terminal and VCC

VCC: 3.3V supply terminal; connectivity for the reed switch; the TBS02PA needs to be powered continuously, if a rain gauge is connected. The rain gauge will be in sleep mode most of the time. A pulse of the rain gauge will generate an interrupt and briefly wake up the controller.

CON2 – latching relay switch terminals; relay: Schrack RT424F05: 250V,max. 300V/8A.

Datasheet: http://www.tekbox.net/_downloads/Relay_ENG_DS_RT2_bistable_0910.pdf

CON1 - do not connect; for factory test only

3.3 DIN-RAIL variant, board overview

Figure 4 – Fibox Variant: Connector Positions

CON7, CON8, CON9 – shared, analog input channels

CH0: Analog input channel 0; 0...1V input voltage range

CH1A: Refer to commands concerning CH1; Analog input channel 1; 0...2.5V input voltage range *CH1B:* Refer to commands concerning CH2; Analog input channel 2; 0...0.25V/0.5V input range *CH2:* Analog input channel 2; 0...5V input voltage range

CH3: Analog input channel 3; 0(4)...20mA input current range

VCCA: switched supply voltage for analog CH0, CH1A; 6....12V, equivalent to SDI-12 supply voltage *VCCB:* switched supply voltage for analog CH1B, CH2, CH3; 6....12V, equivalent to SDI-12 supply

CON10 – Wind vane terminal block; analog input; connectivity for potentiometer based wind vanes

GND: connect the low side of the potentiometer to this terminal, connect to cable shield if available *WV:* connect the wiper of the potentiometer to this terminal

VCCV: 2.5V buffered reference voltage output; connect the high side of the potentiometer to this terminal

CON11 – Anemometer terminal block; pulse input; connectivity for active (pulse output) and passive (reed switch) anemometers

GND: connect to sensor GND, connect to cable shield if available

ANP: connect to the pulse output of the sensor (active anemometer); connect the reed switch of passive anemometers between this terminal and VCC

VCCA: supply terminal for active anemometers; the output voltage is equivalent to the SDI-12 supply voltage and gets switched on during an SDI-12 measurement; connectivity for the reed switch

CON12 - Rain Gauge input channel; pulse input; connectivity for reed switch based rain gauges

GND: connect to sensor GND and cable shield if available

RGP: connect the reed switch of the rain gauge between this terminal and VCC

VCCR: 3.3V supply terminal; connectivity for the reed switch; the TBS02PA needs to be powered continuously, if a rain gauge is connected. The rain gauge will be in sleep mode most of the time. A pulse of the rain gauge will generate an interrupt and briefly wake up the controller.

CON13 – SDI-12 Interface

Shield: connect to the shield of the SDI-12 cable or leave it unconnected Ground: connect to the GND wire of the SDI-12 cable Data: connect to the data wire of the SDI-12 cable Power: connect to the positive supply voltage wire of the SDI-12 cable; 6V..16V, nominal 12V

CON14 – Relay Interface

R1A: Relay1, contact A *R1B*: Relay1, contact B

4 Anemometer input

Figure 5 – reed switch based anemometer; connection to TBS02PA

Figure 6 – light barrier based anemometer; connection to TBS02PA

The anemometer input can handle reed switch based anemometers or light barrier / hall sensor based anemometers which require 12V supply voltage and which deliver pulses at the output. The pulse amplitude can be in the range of 3V...12V and even higher.

Modern commercial anemometers have a linear measurement range of 0.3 to 75m/s with a measurement uncertainty in the range of 1 to 2%. Linear measurement range refers to the function of wind speed versus angular speed or RPM of the rotor.

It is necessary to know the relation between pulse rate and wind speed. This may be given in various units, depending on the manufacturer and should be specified in the manual of the anemometer.

The anemometer input can either measure momentary wind speed (simple mode), or measure average wind speed, maximum wind speed and minimum wind speed over a configurable logging period (advanced mode).

In advanced mode, wind speed is measured every 3 seconds. The measurement valuess are then averaged over a configurable period which must be a multiple of 3 seconds, up to a maximum of 60 seconds. The averaged values are then collected over a configurable logging period. At the end of the logging period, average wind speed, minimum- and maximum windspeed of the logging period is calculated and stored. Upon a measurement command, the results of the latest, completed logging period will be delivered. The anemometer must be continuously powered when it is operated in advanced mode.

aM6!	Start Measurement of wind speed	A0061 <cr><lf> Delay (006) in seconds and number of values (1)</lf></cr>
aMC6!	Additional Measurement and request CRC Measures wind speed and calculates CRC	A0061 <cr><lf> Delay (006) in seconds and number of values (1)</lf></cr>
	Start Concurrent Measurement	A0061 <cr><lf></lf></cr>
aC6!	Concurrent measurement of wind speed	Delay (006) in seconds and number of values (1)
	Start Concurrent Measurement and request CRC	A0061 <cr><lf></lf></cr>
acu6!	Concurrent measurement of wind speed and CRC measurement	Delay (006) in seconds and number of values (1)
-001	Get Measurement Result	a+sss.ss <cr><lf></lf></cr>
aDu	The result is five digits with the decimal point at any position. The unit depends on the scaling factor	
	Set the scaling factor	
aXSASF,sn.nnnnnnnn!	The scaling factor is seven digits with the decimal point at any position. The scaling factor is a multiplicator applied to the number of pulses measured during a 5 second sampling period. It is used to convert the measured number of pulses into wind speed. See examples for calculating the scaling factor below. The default scaling factor is 0.2	aX_ok <cr><lf></lf></cr>
aXGASF!	Query the scaling factor	a+sn.nnnnnn <cr><lf></lf></cr>
aXSAMm!	Set mode for anemometer m = 0: simple mode, measurement of momentary wind speed m = 1: advanced mode, measurement of average -, maximum- and minimum wind speed	aX_ok <cr><lf></lf></cr>
aXGAM!	Query anemometer mode	a,m <cr><lf></lf></cr>
aXSAMT, t!	Set measurement period Sensor will count the number of pulse during t seconds t = 0.25 to 5 seconds default value is 5 seconds.	aX_ok <cr><lf></lf></cr>
aXGAMT!	Query measurement period	a+t <cr><lf></lf></cr>
aXSRP, t!	Set RTC wakup period RTC will wakup every t seconds and take a measurement t = 3, 4, 5, 6 seconds default value is 6 seconds.	aX_ok <cr><lf></lf></cr>

aXGRP!	Query RTC wakup period	a+t <cr><lf></lf></cr>
	Set averaging period	
aXSAP.t!	t = 3 to 60 seconds	aX_OK <cr><lf></lf></cr>
	Default value is 18 seconds, this value must be a <mark>multiple of RTC</mark> wakup period seconds	
aXGAP!	Query averaging period	a+t <cr><lf></lf></cr>
	Set logging period	
aXSLP,t!	Default value is 900 seconds (15 minutes)	aX_OK <cr><lf></lf></cr>
	Value 60 seconds to 3600 seconds	
aXSLP!	Query logging period	a+t <cr><lf></lf></cr>
	Set offset value	
aXSO,+a.aa!	Default value is 0,5m/s; this value represents the starting threshold for wind speed	aX_OK <cr><lf></lf></cr>
	measurement	
aXGO!	Query offset value	a+a.aa <cr><lf></lf></cr>

Table 1: anemometer specific SDI-12 commands

Extended SDI-12 command to configure the TBS02PA anemometer input: **aXSASF,sn.nnnnnnnn**!

n.nnnnnnn is the anemometer scaling factor which will be multiplied with the number of pulses sampled over 5 seconds. It can be up to 9 digits, with the decimal point anywhere. The result of this multiplication is the value delivered upon a measurement command.

Sample time of the TBS02PA:

5 seconds

The sample time is chosen relatively long in order to improve the resolution of reed switch based wind vanes at low wind speeds.

The default value of the parameter n.nnnnnnn is 0.2 which means that the default output is number of pulses/second.

Wind speed can be expressed in various units. The TBS02PA can output any unit. It just needs to be scaled accordingly, using the extended SDI-12 command for anemometer scaling.

1 kn	= 1 sm/h	= 1,852 km/h	= 0,514 m/s
1 m/s	= 3,6 km/h	= 1,944 kn	= 2,237 mph
1 km/h	= 0,540 kn	= 0,278 m/s	= 0,621 mph
1 mph	= 1,609344 km/h	= 0,8690 kn	= 0,447 m/s

Table 2: wind speed unit conversion

Example 1:

E.g. from Davis 7911 data sheet:

1600rev/hr \equiv 1mph; 1 pulse per revolution

 \rightarrow 1600 rev/hr = 4/9 rev/s; 1rev/s = 9/4mph = 2.25mph

Taking into account the sampling periods of 5 s: V = P(2.25/T)

V = speed in mph

P = no. of pulses per sample period

T = sample period in seconds (5 s)

\rightarrow V = P(2.25/5) = 0.45P [mph]
TBS02PA set to address 0
0XSASF,0.45! will deliver the wind speed in mph (miles per hour)
0XSASF,0.742048! will deliver the wind speed in km/h
0XSASF,0.20115! will deliver the wind speed in m/s
0XSASF,0.39105! will deliver the wind speed in kn (knots)
10 pulses/sec ≡ 1knot;
\rightarrow V = P/T*10 [knots]
V = speed in knots
P = no. of pulses per sample period
T = sample period in seconds (5 s)
\rightarrow V = P/50) = 0.02P
TBS02PA set to address 0
0XSASF,0.02! will deliver the wind speed in knots
0XSASF,0.03704! will deliver the wind speed in km/h
0XSASF,0.01028! will deliver the wind speed in m/s
0XSASF,0.02301! will deliver the wind speed in mph

5 Wind vane input

Figure 7 – Connection of a potentiometer based wind vane

aM4!	Start Measurement of the wind vane angle	A0011 <cr><lf> delay (001) in seconds and number of values (1)</lf></cr>
aMC4!	Additional Measurement and request CRC Measures wind vane angle and calculates CRC	A0011 <cr><lf> delay (001) in seconds and number of values (1)</lf></cr>
aC4!	Start Concurrent Measurement Concurrent measurement of wind vane angle	A0011 <cr><lf> delay (001) in seconds and number of values (1)</lf></cr>
aCC4!	Start Concurrent Measurement and request CRC Concurrent measurement of wind vane angle and CRC measurement	A0011 <cr><lf> delay (001) in seconds and number of values (1)</lf></cr>
aD0!	Get Measurement Result	A+www.w <cr><lf> www.w angle in degrees</lf></cr>
aXSSP4,sa,sb,sc,sd!	Set the coefficients of the scaling-polynomial $y = a^{*}x^{3} + b^{*}x^{2} + c^{*}x + d$ Default coefficients are $a = 0$; $b=0$; $c=144$; $d=0$	aX_ok <cr><lf></lf></cr>
aXGSP4!	Query the coefficients of the scaling-polynomial	a+a.aaaa+b.bbbb+c.cccc+d.dddd< CR> <lf></lf>

Table 3: wind vane specific SDI-12 commands

The wind vane input is a 2.5V range analog input which provides a stable 2.5V reference to drive the potentiometer. It is connected to the ADC and can be scaled with a polynomial like the other analog input channels. If no wind vane is connected, the input can be used as an analog input channel for other sensors.

Extended SDI-12 command to configure the TBS02PA wind vane input: **aXSSP4,sa,sb,sc,sd!**

Sa, sb, sc, sd: sign followed by up to 5 digits per coefficient; the decimal point may be at any position; if no sign is added to the coefficient, the number is considered to be positive. In this case, the length of the coefficient can be extended to 6 digits.

 $y = a^{*}x^{3} + b^{*}x^{2} + c^{*}x + d$

24 Bit Analogue to SDI-12 Interface manual

The wind vane input is by default scaled to 2.5V \equiv 360°; \rightarrow 1V \equiv 144°; \rightarrow **a** = **0** ; **b**=0; **c**=144; **d**=0 **aXSSP4**,0,0,144,0!

6 Rain gauge input

Figure 8 – rain gauge connected to TBS02PA

Connect the rain gauge to the TBS02PA according figure 6.

The TBS02PA will accumulate rainfall independently of the data logger. Consequently **the TBS02PA needs to be continuously supplied with 12 V in case that a rain gauge is connected**. Every pulse of the tipping bucket will create an interrupt and wake up the controller to accumulate the pulse. In between the pulses, the TBS02PA will switch into sleep mode.

As the rain gauge feature of the TBS02PA is delivering accumulated measurements, it is important to set date and time of the RTC. Date and time can be set using a PC and USB to SDI-12 converter, before installing the device in the field. The RTC is buffered by a super capacitor and will hold date and time over several months.

Command	Description	Response
aXSD,YYYY,MM,DD!	Set date [a] is the sensor address YYYY,MM,DD, is year, month, day	aX_OK <cr><lf></lf></cr>
aXST,HH,MM,SS!	Set time [a] is the sensor address HH,MM,SS, is hour, minute, second (24 hr format)	aX_OK <cr><lf></lf></cr>
aXGD!	Query date	a+YYYY+MM+DD <cr><lf> no trailing zeros in response</lf></cr>
aXGT!	Query time	a+HH+MM+SS <cr><lf> no trailing zeros in response</lf></cr>

24 Bit Analogue to SDI-12 Interface manual

The daily accumulation of rainfall will be automatically reset at 00:00. Upon installation/powering the rain gauge, it will accumulate the daily rainfalls until issuing an extended SDI-12 command to reset the total accumulated value to zero. After reset, accumulation will start again. By default, the start value is zero, however the start value can also be set using an extended SDI-12 command. The reset commands sets all accumulated rainfall values to zero. An additional command is available to overwrite / set a different start value for the total accumulated rainfalls.

oM51	Start Measurement	A0014 <cr><lf></lf></cr>
aws!		Delay (001) in seconds and number of values (5)
2MC51	Additional Measurement and request CRC	A0014 <cr><lf></lf></cr>
awc5:	Measures and calculates CRC	Delay (001) in seconds and number of values (5)
aC51	Start Concurrent Measurement	A0014 <cr><lf></lf></cr>
a05:	Measures and calculates CRC	Delay (001) in seconds and number of values (5)
20051	Start Concurrent Measurement and request CRC	A0014 <cr><lf></lf></cr>
acco:	Measures and calculates CRC	Delay (001) in seconds and number of values (5)
	Get Measurement Result	
	AA.AAA accumulated rainfall since last measurement	
aD01	BB.BBB accumulated rainfall of today (starting at 00:00)	a+AA.AAA+BB.BBB+CC.CCC+DDDD.D
abv.	CC.CCC accumulated rainfall of yesterday	DD <cr><lf></lf></cr>
	DDDD.DDD total accumulated rainfall since reset command	
	the decimal point can be anywhere, no leading zeros	
aXSBV on nnl	Set rain gauge bucket volume	oX ok CPs of Es
	n.nn is the equivalent rainfall in mm or inch, per bucket tip	
aXGBVI	Query rain gauge bucket volume	
	n.nn is the equivalent rainfall in mm or inch, per bucket tip	
	Reset total accumulated rainfalls	
aXRS!	Use this command to set all accumulated rainfall values to zero.	aX_ok <cr><lf></lf></cr>
aXGRS!	Query date of last reset	a+YYYY+MM+DD <cr><lf></lf></cr>
aXSO, snnnn.nn!	Set start value/offset for the total accumulated rainfalls	aX_ok <cr><lf></lf></cr>
aXGO!	Query start value/offset for the total accumulated rainfalls	a+nnnn.nn <cr><lf></lf></cr>

Table 5: rain gauge specific SDI-12 commands

Power management:

If a rain gauge is connected to the TBS02PA, it requires continuous supply. Total power consumption nevertheless is low, as the supply for the other connectors is only switched on during a measurement. The TBS02PA will be in a very low power mode unless tipping of the rain gauge bucket generates an interrupt and wakes up the controller for a short period of time.

A power cut will not cause the loss of any accumulated rainfall value.

7 Analog inputs

The TBS02PA provides 4 analog inputs with input ranges of:

Channel 0 0...1V

Channel 1 0...2.5V

Channel 2 0...0.25V, 0...0.5V, 0...5V (only either one of the two CH2 inputs can be connected at a time) Channel 3 0...20mA

All inputs are mapped to the 0...2.5V measurement range of the ADC. This means that the maximum measurement result without scaling will be 2.5V in any range. The measured parameter of the sensor can easily be responded in its correct units, using extended SDI-12 commands for scaling. Another point to be taken care of is the response time of the sensor. This can also be configured with dedicated SDI-12 commands.

aM!	Measurement Channel0	
aM1!	Additional Measurement Channel1	A00n1 <cr><lf></lf></cr>
aM2!	Additional Measurement Channel2	Delay (00n) in seconds, number of values (1)
aM3!	Additional Measurement Channel3	
aMC!	Measurement and request CRC Channel0	
aMC1!	Additional Measurement and request CRC Channel1	A00n1 <cr><lf></lf></cr>
aMC2!	Additional Measurement and request CRC Channel2	Delay (00n) in seconds, number of values (1)
aMC3!	Additional Measurement and request CRC Channel3	
aC!	Concurrent Measurement Channel0	
aC1!	Concurrent Measurement Channel1	A00n1 <cr><lf></lf></cr>
aC2!	Concurrent Measurement Channel2	Delay (00n) in seconds, number of values (1)
aC3!	Concurrent Measurement Channel3	
aCC!		
aCC1!	Start Concurrent Measurement and request CRC	A00n1 <cr><lf></lf></cr>
aCC2!	Channel0, Channel 1, Channel2, Channel3	Delay (00n) in seconds, number of values (1)
aCC3!		
aD0!	Get Measurement Result	a+n.nnnn <cr><lf></lf></cr>
	Set response time	
aXSRTn, ttt!	n = 03 Channel number; ttt = response time in seconds; default value is 3 seconds	aX_ok <cr><lf></lf></cr>
	Set input voltage range for channel 2:	
aXSCH2.m!	m = 2: 0 0.25V input voltage range	aX_oK <cr><lf></lf></cr>
,,,,,,,	m = 1: 0 0.5V input voltage range	
	m = 0: 0 5V input voltage range (default)	
aXGCH2!	Query input voltage range for channel 2	a,m <cr><lf></lf></cr>
	Set the coefficients of the scaling-polynomial	
	n = 03 Channel number	
aXSSPn,sa,sb,	a, b, c, d. scaling coefficients, s = sign, no sign means positive scaling polynomial: $v = a^x x^3 + b^x x^2 + c^x x + d$	aX_ok <cr><lf></lf></cr>
sc,sd!	x is the voltage at the ADC input: range 0 to 2.5V	
	the scaling polynomial is applied to every measurement with default values: $a=0$, $b=0$, $c=1$, $d=0$	
-XCCD-1	the scaling polynomial is applied to every measurement with default values: a=0, b=0, c=1, d=0 Query the coefficients of the scaling-polynomial	a+a.aaaa+b.bbbb+c.cccc+d.dddd <c< td=""></c<>

Table 6: analog input specific SDI-12 commands

Example 1:

Setra barometric pressure sensor model 278 supply voltage: 9.5 - 28VDC measurement range: 500 - 1100hPa output voltage range: 0 - 5V \rightarrow connect to Channel2

In order to output the measurement results in hPa, the coefficients of the scaling polynomial need to be determined:

The output of the sensor is linear; consequently the coefficients of the nonlinear terms are 0.

a = 0 **b** = 0; the polynomial can be simplified to $\mathbf{y} = \mathbf{0}^* \mathbf{x}^3 + \mathbf{0}^* \mathbf{x}^2 + \mathbf{c}^* \mathbf{x} + \mathbf{d} = \mathbf{c}^* \mathbf{x} + \mathbf{d}$

An output value of 0V corresponds to a barometric pressure value of 500hPa.

 $y = c^*x + d \longrightarrow 500 = c^*0 + d \longrightarrow d = 500$

A sensor output value of 5V results in 2.5V at the ADC input and corresponds to a barometric pressure value of 1100hPa.

 $1100 = 2.5^{*}x + d \qquad \rightarrow 1100 = c^{*}2.5 + 500 \qquad \rightarrow 600 = c^{*}2.5 \qquad \rightarrow c = 240$

The sensor is connected to Channel 2 \rightarrow n=2 and assuming the TBS02PA being set to SDI-12 address a=0 completes the parameters required for the polynomial scaling command.

aXSSPn,sa,sb,sc,sd! \rightarrow the required scaling command is 0XSSP2,0,0,+240,+500!

<u>Note:</u> The datasheet is not specifying any temperature dependence of the sensor characteristics. Consequently no temperature compensation will be applied.

7.1 Temperature compensation

The TBS02PA provides a silicon temperature sensor which can be utilized for temperature compensation of sensor output signals or simply to measure temperature.

Parameter	Min	Тур	Max	Unit
Temperature Resolution		0.1		°C
Initial accuracy @ 25°C		0.5	1	°C
Linearity over temperature		±2	±4	°C
range	-40		+85	°C

Table 7: Temperature sensor characteristics

The temperature compensation is based on a third order polynomial. The temperature compensation is applied to any measurement of the analog input channels; however the coefficients are set by default in order to not take any effect on the scaled measurement results. Depending on the temperature characteristics of the sensor, the coefficients can be modified in order to effectively compensate temperature drift and other temperature dependent effects. Calculation is explained further down in this chapter.

aM7I	Start Temperature Measurement	A0011 <cr><lf></lf></cr>	
		Delay (001) in seconds, number of values (1)	
aMC7I	Additional Temp. Measurement and request CRC	A0011 <cr><lf></lf></cr>	
awor:	Additional Temp. Measurement and request CIVO	Delay (001) in seconds, number of values (1)	
2071	Start Concurrent Temperature Measurement	A0011 <cr><lf></lf></cr>	
aor:	Start Concurrent Temperature Measurement	Delay (001) in seconds, number of values (1)	
2007	Start Concurrent Temperature Measurement and	A0001 <cr><lf></lf></cr>	
accr	request CRC	Delay (001) in seconds, number of values (1)	
aD0!	Get Measurement Result	a+nnn.n <cr><lf></lf></cr>	
	Set the coefficients of the temperature-		
	compensation polynomial		
	n = 03 Channel number		
aXSTPn.sa.sb.	a, b, c, d: temperature compensation coefficients; s = sign		
sc,sd!	x is the measurement result of channel n; range 0 to 2.5V	aX_ok <cr><lf></lf></cr>	
	y is the temperature compensated measurement result		
	temp. compensation polynomial: $y = x(a^{t^3}+b^{t^2}+c^{t}+d)$		
	the temperature compensation polynomial is applied to every measurement with default values: a=0, b=0, c=0, d=1		
	Query the coefficients of the temperature-	ata aaaath bbbbtc cccctd dddd <c< td=""></c<>	
aXGTPn!	compensation polynomial	R> <i f=""></i>	
	n = 03 Channel number		
	Set temperature offset		
aXTO,saa.aa,u!	u = unit:	eV els CPs el Es	
	c,C = Celsius		
	f,F = Fahrenheit		
• VTI I. I	Set temperature unit		
ax i uu!	u = F for [°C], u = f for [°F]	aX_0K <cr><lf></lf></cr>	
aXGU!	Query temperature unit	a,u <cr><lf></lf></cr>	
	Temperature calibration		
aXCT,saa.aa!	saa.aa: enter ambient temperature measured with a reference	aX_ok <cr><lf></lf></cr>	
	thermometer; s is the sign		

 Table 8: Temperature measurement/compensation specific SDI-12 commands

Example 2:

Davis solar radiation sensor 6450

Power supply: $3V \pm 10\%$; $1mA \rightarrow$ supply from rain gauge 3.3V supply pin or insert a 9.1V (12V-3V) zener diode (NXP BZX79-C9V1,143 into the supply line. Check the exact voltage of the SDI-12 supply line and change to another Zener Diode, if the available voltage is far off.

Output voltage range: 0 to 2.5V; 1.67mV per W/m² \rightarrow connect to Channel1

Temperature corrections: coeff = 0.12% per °C; ref temp = 25°C

Scaling:

24 Bit Analogue to SDI-12 Interface manual

In order to output the measurement results in W/m^2 , the coefficients of the scaling polynomial need to be determined:

The output of the sensor is linear; consequently the coefficients of the nonlinear terms are 0.

a = 0 **b** = 0; the polynomial can be simplified to $\mathbf{y} = \mathbf{0}^* \mathbf{x}^3 + \mathbf{0}^* \mathbf{x}^2 + \mathbf{c}^* \mathbf{x} + \mathbf{d} = \mathbf{c}^* \mathbf{x} + \mathbf{d}$

A sensor output value of 0V corresponds to a solar radiation value of 0 W/m².

 $y = c^*x + sd$ $\rightarrow 0 = c^*0 + d$ $\rightarrow d = 0$

A sensor output value of 2.5V results in 2.5V at the ADC input and corresponds to a solar radiation value of 2500mV/1.67mV \equiv 1497 W/m².

$y = c^*x \rightarrow 1497 = c^*2.5 \rightarrow c = 598.8$

The sensor is connected to Channel 1 \rightarrow n=1 and assuming the TBS02PA being set to SDI-12 address a=0 completes the parameters required for the polynomial scaling command.

aXSSPn,sa,sb,sc,sd! \rightarrow the required scaling command is 0XSSP1,0,0,+598.8,0!

Temperature compensation:

The data sheet of the sensor specifies: Temperature corrections coeff = 0.12% per °C; ref temp = 25°C

The temperature drift of the sensor signal is linear; consequently the coefficients of the nonlinear terms are 0.

a = 0 b = 0; the temp. comp. polynomial can be simplified to $y = x(0^{t^3} + 0^{t^2} + c^{t} + d) = x(c^{t} + d)$

Furthermore, the temperature coefficient introduces a positive slope of 0.12% = 0.0012; consequently we have to compensate with a negative slope of the same value $\rightarrow c = -0.0012$

The reference temperature of the sensor is 25° C, which means that we can simplify the equation for room temperature to y = x or in other form

 $c^*25 + d = 1 \rightarrow 25c = 1 - d \rightarrow d = 1 - 25c \rightarrow d = 1 + 25^*0.0012$

d = 1.03

We need to send following extended SDI-12 command: 0XSTP1,0,0,-0.0012,1.03!

check:

@ 25°C; y = x(-0.0012*25 + 1.03) = x(-0.03 + 1.03) = x

@ 45°C; the temperature difference to 25°C is 20°C;

Consequently the sensor signal will have a drift of 20*0.12% = 2.4%

Assuming a solar radiation value of 1000W/m², the sensor will measure 1024 W/m² instead;

However, as we apply temperature compensation, the TBS02PA will deliver following value:

 $y = 1024(-0.0012*45 + 1.03) = 1024*0,976 = 1000W/m^2$

8 Relay Output

Command	Description	Response
aXSR,1!	Close switching contacts of relay a = sensor address; 09, az, AZ	aX_OK <cr><lf></lf></cr>
aXSR,0!	Open switching contact of relay a = sensor address; 09, az, AZ	aX_OK <cr><lf></lf></cr>
aXGR!	Query the status of the relay contacts a = sensor address	aw <cr><lf> w: state of relay possible values of w: 0 or 1 0 = contact open;1 = contact closed</lf></cr>
aXSTM,HH,MM ,mmmm!	Set timer a = sensor address; 09, az, AZ HH,MM; hour, minute; starting time of the event mmmm; duration of the event in minutes (4 digits, maximum value = 1439) At the time set for the timer event, the contacts of the relay will be closed for mmmm minutes.	aX_OK <cr><lf></lf></cr>
aXCT!	Clear timer (no timer operation); default state	aX_OK <cr><lf></lf></cr>

Table 9: relay specific SDI-12 commands

The relay is a latching type relay which toggles upon a short current pulse. Consequently it does not draw any current except for the toggling action.

9 Supported SDI-12 Commands

V1.6

TBS02PA

Following commands are supported by the TBS02PA:

Command	Description	Response
a!	Acknowledge Active	a <cr><lf></lf></cr>
al!	Send Identification	013TEKBOXVNTBSAB21.0000005xxxxx <cr><lf> With xxxxx representing the serial number</lf></cr>
aAb!	Change Address	b <cr><lf> Changing the probe sensor address</lf></cr>
?!	Address Query	a <cr><lf></lf></cr>
aM!	Start Measurement Measures voltage at analogue input channel 0	attt1 <cr><lf> Delay (ttt) in seconds and number of values (1)</lf></cr>
aM1!	Additional Measurement Measures voltage at analog input channel 1	attt1 <cr><lf> Delay (ttt) in seconds and number of values (1)</lf></cr>
aM2!	Additional Measurement Measures voltage at analog input channel 2	attt1 <cr><lf> Delay (ttt) in seconds and number of values (1)</lf></cr>
aM3!	Additional Measurement Measures current at analog input channel 3	attt1 <cr><lf> Delay (ttt) in seconds and number of values (1)</lf></cr>
aM4!	Start Measurement Measures wind vane angle	attt1 <cr><lf> Delay (ttt) in seconds and number of values (1)</lf></cr>
aM5!	Additional Measurement Measures precipitation	attt4 <cr><lf> Delay (ttt) in seconds and number of values (1)</lf></cr>
aM6!	Additional Measurement Measures wind speed	attt1 <cr><lf> Delay (ttt) in seconds and number of values (1)</lf></cr>
aM7!	Additional Measurement Measures temperature	attt1 <cr><lf> Delay (ttt) in seconds and number of values (1)</lf></cr>
aMC!	Start Measurement and request CRC Measures voltage at analog input channel 0 and calculates CRC	attt1 <cr><lf> Delay (ttt) in seconds and number of values (1)</lf></cr>
aMC1!	Additional Measurement and request CRC Measures voltage at analog input channel 1 and calculates CRC	attt1 <cr><lf> Delay (ttt) in seconds and number of values (1)</lf></cr>
aMC2!	Additional Measurement and request CRC Measures voltage at analog input channel 2 and calculates CRC	attt1 <cr><lf> Delay (ttt) in seconds and number of values (1)</lf></cr>
aMC3!	Additional Measurement and request CRC Measures current at analog input channel 3 and calculates CRC	attt1 <cr><lf> Delay (ttt) in seconds and number of values (1)</lf></cr>

24 Bit Analogue to SDI-12 Interface manual

эМС4I	Additional Measurement and request CRC	attt1 <cr><lf></lf></cr>
awiC4:	Measures wind vane angle and calculates CRC	Delay (ttt) in seconds and number of values (1)
	Additional Measurement and request	attt4 <cr><lf></lf></cr>
aMC5!	URC Measures precipitation and calculates CRC	Delay (ttt) in seconds and number of values (1)
	Additional Measurement and request	
aMC6!	CRC	attt1 <cr><lf></lf></cr>
	Measures wind speed and calculates CRC	Delay (ttt) in seconds and number of values (1)
- 11071	Additional Measurement and request	attt1 <cr><lf></lf></cr>
aMC7!	CRC Massures temperature and coloulates CRC	Delay (ttt) in seconds and number of values (1)
	Stort Concurrent Measurement	
aC!	Measures voltage at analogue input channel 0	Delay (ttt) in seconds and number of values (4)
	Start Concurrent Maggurement	
aC1!	Measures voltage at analogue input channel 1	Delay (ttt) in seconds and number of values (4)
	Start Concurrent Measurement	att1 <cr><l f=""></l></cr>
aC2!	Measures voltage at analogue input channel 2	Delay (ttt) in seconds and number of values (4)
	Start Concurrent Measurement	attt1 <cr><lf></lf></cr>
aC3!	Measures current at analogue input channel 3	Delay (ttt) in seconds and number of values (4)
	Start Concurrent Measurement	attt1 <cr><lf></lf></cr>
aC4!	Measures wind vane angle	Delay (ttt) in seconds and number of values (4)
- 051	Start Concurrent Measurement	attt4 <cr><lf></lf></cr>
aC5!	Measures precipitation	Delay (ttt) in seconds and number of values (4)
-061	Start Concurrent Measurement	attt1 <cr><lf></lf></cr>
aco:	Measures wind speed	Delay (ttt) in seconds and number of values (4)
2071	Start Concurrent Measurement	attt1 <cr><lf></lf></cr>
a07.	Measures temperature	Delay (ttt) in seconds and number of values (4)
	Start Concurrent Measurement and	
aCC!	request CRC	$A_{\rm III} = C_{\rm III} = C_{\rm III}$
	calculates CRC	
	Start Concurrent Measurement and	
aCC1!	request CRC	attt1 <ur><lf></lf></ur>
	Measures voltage at input channel 1 and calculates CRC	Delay (ttt) in seconds and number of values (4)
	Start Concurrent Measurement and request CRC	attt1 <cr><lf></lf></cr>
aCC2!	Measures voltage at input channel 2 and calculates CRC	Delay (ttt) in seconds and number of values (4)
	Start Concurrent Measurement and	
aCC3!	request CRC	
	Measures current at input channels 3 and calculates CRC	Delay (ttt) in seconds and number of values (4)

aCC4!	Start Concurrent Measurement and request CRC Measures wind vane angle and calculates CRC	attt1 <cr><lf> Delay (ttt) in seconds and number of values (4)</lf></cr>
aCC5!	Start Concurrent Measurement and request CRC Measures precipitation and calculates CRC	attt4 <cr><lf> Delay (ttt) in seconds and number of values (4)</lf></cr>
aCC5!	Start Concurrent Measurement and request CRC Measures wind speed and calculates CRC	attt1 <cr><lf> Delay (ttt) in seconds and number of values (4)</lf></cr>
aCC7!	Start Concurrent Measurement and request CRC Measures temperature and calculates CRC	attt1 <cr><lf> Delay (ttt) in seconds and number of values (4)</lf></cr>
aD0!	Get Measurement Result(s)	Upon issuing the aD0! Command, the TBS02B will send the measurement results. The response format depends on the measurement command issued before.
aV!	Start Verification	a0000 <cr><lf> Not supported</lf></cr>
aRn! aRCn!	Continuous Measurement Continuous Measurement + CRC	a <cr><lf> Not supported</lf></cr>

Table 10 – Standard SDI-12 commands

9.1 Supported Extended Commands

Command	Description	Response		
	Anemometer			
aXSASF,sn.nnn nnnnn!	Set the scaling factor The scaling factor is seven digits with the decimal point at any position. The scaling factor is a multiplicator applied to the number of pulses measured during a 5 second sampling period. It is used to convert the measured number of pulses into wind speed. See examples for calculating the scaling factor in chapter 4. The default scaling factor is 1.	aX_ok <cr><lf></lf></cr>		
aXSAMm!	Set mode for anemometer m = 0: simple mode, measurement of momentary wind speed m = 1: advanced mode, measurement of average -, maximum- and minimum wind speed	aX_ok <cr><lf></lf></cr>		
aXSAMm!	Set mode for anemometer m = 0: simple mode, measurement of momentary wind speed m = 1: advanced mode, measurement of average -, maximum- and minimum wind speed	aX_ok <cr><lf></lf></cr>		
aXGAM!	Query anemometer mode	a,m <cr><lf></lf></cr>		
aXSAMT, t!	Set measurement period	aX_ok <cr><lf></lf></cr>		

	Sensor will count the number of pulse during t seconds	
	t = 0.25 to 5 seconds	
	default value is 5 seconds.	
aXGAMT!	Query measurement period	a+t <cr><lf></lf></cr>
	Set RTC wakup period	
	RTC will wakup every t seconds and take a measurement	
aXSRP, t!	t = 3, 4, 5, 6 seconds	aX_ok <cr><lf></lf></cr>
	default value is 6 seconds.	
aXGRP!	Query RTC wakup period	a+t <cr><lf></lf></cr>
	Set averaging period	
aXSAP,t!	t = 3 to 60 seconds	aX_OK <cr><lf></lf></cr>
	Default value is 18 seconds, this value must be a multiple of RTC wakup period seconds	
aXGAP!	Query averaging period	a+t <cr><lf></lf></cr>
	Set logging period	
aXSLP,t!	Default value is 900 seconds (15 minutes)	aX_OK <cr><lf></lf></cr>
	Value 60 seconds to 3600 seconds	
aXSLP!	Query logging period	a+t <cr><lf></lf></cr>
	Set offset value	
aXSO,+a.aa!	Default value is 0,5m/s; this value represents the starting threshold for wind speed	aX_OK <cr><lf></lf></cr>
	measurement	
aXGO!	Query offset value	a+a.aa <cr><lf></lf></cr>
	Wind Vane	
	Set the coefficients of the scaling-polynomial	
aXSSP4,sa,sb,s	$y = a^{*}x^{3} + b^{*}x^{2} + c^{*}x + d$	aX_ok <cr><lf></lf></cr>
c,sd!	Default coefficients are a = 0; b=0; c=144; d=0 which translates the 02.5V ADC range	
aXGSP/I	Query the coefficients of the scaling-polynomial	a+a.aaaa+b.bbbb+c.
	Query the coefficients of the scaling-polynomial	F>
	RTC	
aXSD,YYYY,MM	Set date	aX OKCORSCIES
,DD!	[a] is the sensor address; YYYY,MM,DD, is year, month, day	
aXST,HH,MM,S	Set time	aX_OK <cr><le></le></cr>
S!	[a] is the sensor address; HH,MM,SS, is hour, minute, second (24 hr format)	
		a+YYYY+MM+DD <c< td=""></c<>
aXGD!	Query date	K> <lf></lf>
		no trailing zeros in response
		a+HH+MM+SS <cr></cr>
aXGT!	Query time	<lf></lf>
		no trailing zeros in
	Pair Course	response
	kain Gauge	

aXSBV sn nnl	Set rain gauge bucket volume	aX_okcCRscLFs	
	n.nn is the equivalent rainfall in mm or inch, per bucket tip		
aXGBV!	Query rain gauge bucket volume	a+n nn <cr><le></le></cr>	
	n.nn is the equivalent rainfall in mm or inch, per bucket tip		
aXRS!	Reset total accumulated rainfalls	aX_ok <cr><le></le></cr>	
	Use this command to set the all accumulated rainfall values to zero.		
aXGRS!	Query date of last reset	a+YYYY+MM+DD <c R><lf></lf></c 	
aXSO, snnnn.nn!	Set start value/offset for the total accumulated rainfalls	aX_ok <cr><lf></lf></cr>	
aXGO!	Query start value/offset for the total accumulated rainfalls	a+nnnn.nn <cr><lf ></lf </cr>	
	Analog Input Channels		
aVCDTn 444	Set response time	aV alcoDe al De	
axskin, ttt!	n = 03 Channel number; ttt = response time in seconds; default value is 3 seconds	aX_OK <cr><lf></lf></cr>	
	Set the coefficients of the scaling-polynomial		
	n = 03 Channel number		
aXSSPn,sa,sb,s	a, b, c, d: scaling coefficients; s = sign; no sign means positive		
c,sd!	scaling polynomial: $y = a^{*}x^{3} + b^{*}x^{2} + c^{*}x + d$	aX_0K <cr><lf></lf></cr>	
	x is the voltage at the ADC input; range 0 to 2.5V		
	the scaling polynomial is applied to every measurement with default values: $a=0$, $b=0$, $c=1$, $d=0$		
	Query the coefficients of the scaling-polynomial	a+a.aaaa+b.bbbb+c.	
aXGSPn!	n = 03 Channel number	cccc+d.dddd <cr><l< td=""></l<></cr>	
		F>	
	Set the coefficients of the temperature- compensation polynomial		
	n = 03 Channel number		
aXSTPn.sa.sb.s	a, b, c, u. temperature compensation coefficients, $s = sign x$		
c,sd!	v is the temperature compensated measurement result	aX_ok <cr><lf></lf></cr>	
	temp. compensation polynomial: $y = x(a^{t^3}+b^{t^2}+c^{t}+d)$		
	the temperature compensation polynomial is applied to every measurement with default		
	values: a=0, b=0, c=0, d=1		
aVGTPpl	Query the coefficients of the temperature- compensation polynomial	a+a.aaaa+b.bbbb+c.	
ang i Fill	n = 03 Channel number	F>	
	Set range for channel 2:		
NOOLIO I	m = 2: 00.25V input voltage range		
aXSCH2,m!	m = 1: 0 0.5V input voltage range	aX_OK <cr><lf></lf></cr>	
	m = 0: 0 5V input voltage range (default)		
	Query range for channel 2		
		a,m <cr><lf></lf></cr>	
Relay			
	Close switching contacts of relay		
axSR,1!	a = sensor address; 09, az, AZ	ax_UK <uk><lf></lf></uk>	
aXSR,0!	Open switching contact of relay	aX_OK <cr><lf></lf></cr>	

	a = sensor address; 09, az, AZ	
aXGR!	Query the status of the relay contacts a = sensor address	aw <cr><lf> w: state of relay – 0 or 1 0 ≡ contact open;1 ≡ contact closed</lf></cr>
aXSTM,HH,MM, mmmm!	Set timer a = sensor address; 09, az, AZ HH,MM; hour, minute; starting time of the event mmmm; duration of the event in minutes (4 digits, maximum value = 1439) At the time set for the timer event, the contacts of the relay will be closed for mmmm minutes	aX_OK <cr><lf></lf></cr>
aXCT!	Clear timer (no timer operation); default state	aX_OK <cr><lf></lf></cr>

Table 11 – Extended SDI-12 Commands

24 Bit Analogue to SDI-12 Interface manual

10 Application Example

This chapter is a practical guide on how to set up a TBS02PA, interface it to a PC with a TBS03 SDI-12 to USB converter and carry out measurements.

10.1 Setting up TBS02PA together with TBS03

10.1.1 Requirements

User Interface

Any hyper terminal (e.g.: Windows Hyper Terminal, <u>Terminal V1.9B</u>, <u>RealTerm</u>) or SDI-12 commander light. **Hardware Interface**

PC or laptop with USB interface and mini USB-B cable (USB cable supplied with TBS03)

10.1.2 Driver

Silicon Labs CP210x driver must be installed on PC (on CD supplied with TBS03 or download from <u>Silicon Labs</u>) Do not connect TBS03 to the PC, when starting the CP2102 driver installation process!

1) Start the driver installation executable

2) Follow the installation instructions step by step until the driver installation process is finished

3) The system may need to restart

4) Upon restart after successful driver installation (and not before), connect the TBS03 to the USB interface of the PC

5) Wait until you get the notification that the new hardware has been installed and are ready to use.

Some terminal programs need manual COM port set up.

Open the hardware manager to check the COM port number assigned to the Silicon Labs USB Bridge.

Every TBS03 device is serialized with an individual number. This enables the use of several TBS03's in parallel on a single PC or Laptop.

10.2 Hardware

- Connect the USB / SDI-12 Converter to the PC via USB port.
- Connect the TBS03 SDI-12 data interface to the TBS02PA SDI-12 Interface.
- Connect a voltage source 0 < V < 2,5V to channel 0

10.3 Setting up SDI-12 Commander Lite

- Download SDI-12 Commander Lite from the Tekbox website (TBS03 page) and decompress it to your hard disk.
- No further installation process is required. Execute *SDI12_commander_lite.exe*.

10.4 Operating the TBS02PA using SDI-12 Commander Lite

Start SDI-12 Commander Lite.

Click the "Settings", "COM Port" menu and select the correct COM Port number. Click the "Connect" button in the main window to activate the Com Port.

In the "File" menu, click "add sensor to the network". Click the TBS02PA picture in the pop-up window and press "OK"

Figure 9-SDI-12 Commander Lite: sensor selection

A tab containing the SDI-12 commands for the TBS02PA will be added:

📌 SDI-12 COMMANDER LITE				
<u>File Buttons</u> <u>Settings</u> <u>Help</u>				
TBS03 TBS02PA				
Recorder Commands General Sensor Commands				
Start transparent mode	Start auto measurement	Start SDI-12 test	Stop (any mode)	
C connect manual command				
Try to open port COM4 port COM4 opend successfully				

Figure 10 – command tab for TBS02PA added

Clicking the tab for the TBS02PA opens further tabs with command buttons for all features of the TBS02PA.

👎 SDI-12 COMMANDER LITE			
File Buttons Settings Help			
TBS03 TBS02PA			
TBS02PA,Anemometer TBS02PA,Wind Vane TBS	02PA,Rain Gauge TBS02PA,Analog Channel 1 TBS	02PA,Analog Channel 1 TBS02PA,Analog Channel 2	TBS02PA,Analog Channel 3 TBS02PA,RTC
Set Date	Set Time	Get Date	Get Time
C connect manual command			
Try to open port COM4 port COM4 opend successfully			

Figure 11 – Anemometer command buttons

10.4.1 Setting time and date

Press the TBS02PA / RTC tab and press the date button.

The TBS03 will issue the string 0XSD,YYYY,MM,DD! and response with 0X_fail as the command string only contained place-holder characters for the date. However you now got the command into the command line and you can easily edit it. Replace YYYY,MM,DD with the actual date and press the red button to the right of the command line.

Repeat the same process with the actual time.

Alternatively you could straight away type the extended SDI-12 command with the actual date / time into the command line and press the red button to the right of the command line.

Sol:12 COMMANDER LITE [8] Ele Buttors Setting: Heb [18] Tissoj: Tissoja: Al [18]				
TBS02PA Anemometer TBS02PA Wind Vane TBS	02PA,Rain Gauge TBS02PA,Analog Channel 1 TBS	02PA,Analog Channel 1 TBS02PA,Analog Channel 2	TBS02PA,Analog Channel 3 TBS02PA,RTC	
Set Date	Set Time	Get Date	Get Time	
C connect manual command (0×GT!				× 🧕
Try to open port COM4 port COM4 opend successfully 0XSD YYYY, MM,DDI 0X fail 0XSD 2147Y, MM,DDI 0X,SD 2013,08,181 0X,COK 0XSD 2013,08,181 0X,COK 0XST HH, MM,SSI 0XST HH, MM,SSI 0XST HH, MM,SSI 0XST H4, MM,SSI 0XST H4, MM,SSI 0XST H2, 00,001 0X,CM 0XST H2, 00,01 0X,CM 0XST H2, 00,01 0X,CM				

Figure 12 – setting date and time

10.4.2 Setting parameters for wind vane, anemometer and rain gauge

Assumptions:

TBS02PA set to address0

Connection of a Davis 7911 wind vane / anemometer:

Wind speed to be calculated in km/h; required setting according to chapter 4: 0XSASF,0.27945!

Wind direction in angular degree; required setting according to chapter 5: **0XSSP4,0,0,144,0**!

Connection of a Setra barometric pressure sensor model 278 to analog Channel2:

Scaling settings according to chapter 7: 0XSSP2,0,0,+240,+500!

Connection of a Davis solar radiation sensor 6450 to analog Channel1:

Scaling settings according to chapter 7: 0XSSP1,0,0,+598.8,0!

Temperature compensation to chapter 7: **0XSTP1,0,0,-0.0012,1.03**!

Click "Buttons", "Edit buttons". A pop-up window will open. Click "New" and enter the name of an additional page for the TBS02PA tab: e.g. "Settings".

Enter the extended SDI-12 commands accordingly and assign names to the command buttons.

Press the "OK" button to add the settings page to the TBS02PA tab.

If you want to permanently save the settings page to the TBS02PA button file, click the "File" menu, "Save button file". Click "Save". A window will pop up and ask to add a user defined picture to the sensor. As there is already a picture assigned to the TBS02PA, click "Abort".

🜱 Eo	f Edit Sensors and Buttons				
Sens	lor				
TBS	SU2PA	change address Rename	Delete		
Page	es		1		
Set	ings 🔽	New Copy Bename	Delete		
-	Name	Command			
1	Scale 7911 anemometer	0XSASE.0.27945			
2	Scale 7911 wind vane	0KSSP4.0.0.144.0			
3	Scale Setra 278	0XSSP2,0,0,+240,+500!			
4	Scale radiation sensor 6450	0XSSP1,0,0,+598.8,0!			
5	Temp. comp. sensor 6450	0×STP1,0,0,-0.0012,1.03			
6					
7					
8					
9					
10					
11					
12					
13					
14					
15					
16					
17					
18					
19					
20					
21					
22					
23					
24			_		
]		▶		
	🕞 save 💋 undo	🗶 Abort 🔍 🗸 Oł			

Figure 13 – "Edit buttons" window

Alternatively you could open the file TBS02PA.btn in the template folder of the SDI-12 Commander Lite directory and append the new buttons/commands with a text editor:

```
[Settings]
Scale 7911 anemometer=0XSASF,0.27945!
Scale 7911 wind vane=0XSSP4,0,0,144,0!
Scale Setra 278=0XSSP2,0,0,+240,+500!
Scale radiation sensor 6450=0XSSP1,0,0,+598.8,0!
Temp. comp. sensor 6450=0XSTP1,0,0,-0.0012,1.03!
```

Finally, click the settings tab and consecutively press the settings buttons.

		• • •			
👎 SDI-12 COMMANDER LITE	SDI-12 COMMANDER LITE				
Eile Buttons Settings Help					
TBS03 TBS02PA					
TBS02PA,Anemometer TBS02PA,Wind Vane TBS	02PA,Rain Gauge TBS02PA,Analog Channel 1 TBS	02PA,Analog Channel 1 TBS02PA,Analog Channel 2	TBS02PA,Analog Channel 3 TBS02PA,RTC Settin	gs	
Scale 7911 anemometer Scale 7911 wind vane Scale Setra 278 Scale radiation sensor 6450 Temp. comp. s			Temp. comp. sensor 6450		
© connect					
C disconnect					
0XSASF,0.27945!					
0X_OK					
0XSSP4,0,0,144,0!					
0X_OK					
0XSSP2,0,0,+240,+500!					
0X_OK					
0XSSP1,0,0,+598.8,0!					
0X_OK					
0XSTP1,0,0,-0.0012,1.03!					
0X_OK					

The TBS02PA is now configured. All settings are stored in EEPROM. It is ready to be installed in the field.

11 Technical Specifications

V1.6

TBS02PA

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
ls	Supply current 1)	Active mode (during measurement)	6mA		10mA	mA
ls	Supply current	Sleep mode		30		μA
Vs	Supply voltage ²⁾		7		16	V
tm	Measurement Time 3)	Time in active mode upon receiving a measurement command		1		S
Vr	Voltage measurement range	Analog channel0	0		1	V
Vr	Voltage measurement range	Analog channel1	0		2.5	V
Vr	Voltage measurement range	Analog channel2	0		5	V
Vr	Current measurement range	Analog channel3	0		20	mA
R	Voltage measurement resolution			12		Bit
Vref	2.5V reference voltage accuracy			±2 5		mV ppm/°C
TR_int	Internal sensor: Temperature measurement range		-40		+85	°C
TA_int	Internal sensor: Temperature calibration accuracy	@ 25°C		±0.5	±1	°C
TL_int	Internal sensor: Temperature measurement resolution			0.1		°C
TL_int	Internal sensor: Temperature measurement linearity	from -40°C to +85°C		±2	±4	°C
ZIN_v	Input Impedance	voltage measurement mode		1M		MOhm
ZIN_i	Input Impedance	current measurement mode		125		Ohm
OV_V	Input overvoltage protection	Varistor, spark gap, clamping diodes max. continuous overvoltage			30	V

1) The total current consumption depends on the current consumption of the connected sensors

2) Note: The supply voltage range refers to the TBS02PA. The min/max supply voltage of external sensors which are supplied through the sensor supply terminals of the TBS02PA may differ from the supply voltage range of the TBS02PA.

3) Depends on response time setting

Table 12 – Technical Specifications

12 Environmental Specifications

Symbol	Parameter	Conditions	Min	Max	Unit
TA	Operating Ambient Temperature Range		-40	+85	°C
T _{STG}	Storage Temperature Range		-40	+85	°C
	Moisture level	closed housing	-	100	%

Table 13 - Environmental Specifications

13 Ordering Information

Part Number	Description
TBS02PA	TBS02PA, Analogue to SDI-12 Interface, Fibox housing
TBS02PA-DR	TBS02PA, Analogue to SDI-12 Interface, DIN-Rail housing

Table 14 – Ordering Information

14 History

V1.6

TBS02PA

Version	Date	Author	Changes
V1.0	18.08.2013	Mayerhofer	Creation of the document
V1.1	22.08.2013	Mayerhofer	Correction of the default anemometer scaling factor
V1.2	29.08.2013	Mayerhofer	Formatting
V1.3	09.10.2013	Mayerhofer	Correction of example 1,2/ in chapter 4
V1.4	11.18.2013	Thinh	Added: Set input voltage range for channel 2
V1.5	11.01.2014	Thinh	Advanced measurement mode for anemometer added
V1.6	28.05.2014	Mayerhofer	Correction of table 8

Table 15 – History